Chapter 2 part 3

∇_{n} - the set of equivalence classes with respect to the congruence relation \equiv $n>0, n \in \pi \quad$ congruence classes
Operations \oplus, \odot on \mathbb{Z}_{n} induced from addition and multiplication on \mathbb{Z} Th2.7 The operations \oplus, \odot have all expected properties.

Example $\quad[a] \odot([b] \oplus[c])=[a] \odot[b] \oplus[a] \odot[c]$
Notations Usually one skips brackets and circles
Example: they write $a \in \mathbb{Z}_{n}$ meaning $[a] \in \mathbb{Z}_{n}$

$$
3 \cdot 9=3 \text { in } \mathbb{Z}_{6} \text { meaning }[3] 0[9]=[3] \text { in } \nabla_{6}
$$

One cannot wake cancellations

$$
9 \neq 1 \text { in } \nabla_{6}
$$

$$
\begin{aligned}
{[27] } & =[3] \\
27 & \equiv 3(\bmod 6)
\end{aligned}
$$

llobeover, it is convenient to use parsers:
for $k>0, k \in \pi$, not an element of π_{n}

$$
a^{k}=[a]^{k}=\underbrace{a \cdot a \ldots a}_{k \text { times }}=\underbrace{[a] \odot[a] \odot \ldots \odot[a]}_{k \text { times }} \text { in } \pi_{n}
$$

A subtlety
For positive integers a, b, what is $a b \in \pi_{n}$?

Ist interpretation

$$
a b=[a] \odot[b] \in \mathbb{Z}_{n}
$$

2nd interpretation

$$
a b=\underbrace{[b] \oplus[b] \oplus \ldots \oplus[b]}_{a \text { tives }} \in \mathbb{Z}_{n}
$$

Iorlunately. there is no amebiguity:

$$
\underbrace{[b] \oplus \ldots \oplus[b]}_{a \text { times }}=[\underbrace{b+\ldots+b}_{a \text { fimes }}]=[a b]=[a] \odot[b]
$$

